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Abstraci. In this paper the connection between field models and infinite-dimensional Lie 
groups is widely analysed on the bases of a new group quantization approach. W e  also 
relate the Poinear&Cartan form of variational calculus to the symplectic currentfstructure 
of the mvariant phase-space formulation of (higher-derivative) field theory. The Virasoro 
and Kac-Moody groups are considered. In the first case the action functional of the 
z ~ i n d u c e d  gravity in the light-cone formulation is derived. The hidden SL(2, R) simply 
appears as generated by the kernel of the Lie algebra two-cocycle and plays the role of a 
gauge-type symmetry. Nevertheless, it is shown that a proper space-like formulation is out 
of reach of the Virasoro group. The corresponding symplectic structure of the (non- 
1ocal)action functional is determined showing that it is related to the symplectic structure 
associated with the SL(2.RbKac-Moody group. This unravels the proper geometrical 
meaning of the hidden symmetry and differs from the analysis in related works based on 
the madjoint-orbit approach. The relation between the Kac-Moody groups and the Chem- 
Simons gauge theory on a disc in the presence of a source is considered using the new 
approach. 

1. Introduction 

In this paper we give a systematic analysis of the relationship between field models 
and infinite-dimensional Lie groups. Our point of view is based on a previously 
introduced group theoretical quantization approach [ 1-31 that generalizes in several 
aspects the geometric quantization and the coadjoint-orbit method [4-61. At the classical 
level the method [l-31 aims to construct an action functional from a Lie group wearing 
a U(l).fibred structure (as do, for instance, centrally extended groups like the Virasoro 
and Kac-Moody groups). The simplest example for illustrating this method is that of 
&,, the central extension of the Galilei group 6 by U(l), where the parameter m (the 
mass) is an element of H2(G,  U(1)). Choosing the following 2-cocycle for fulfilling 
the central extension: 

&,,(g', g j  = m[r'.u+ t ( u . u + f ~ " j ]  
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the Maurer-Carran left-invariant 1-form associated with the central generator is 

d5 Q = -mx.du -;mu’ dt +T 
1s 

where J = exp irp is the U( 1) central parameter. 0 is also related to the Poincar.6-Cartan 
form of classical mechanics (see later). When restricted to trajectories 0 becomes 

(mwi - fmu2)  dt =2 dt 

up to a total derivative. Inthis case thegroup&,, isatrivial U(l)-bundle on6(,,/U(l). 
In general, as we shall see later in this paper, the non-triviality of the U(1)-fibred 
structure leads to multivalued action functionals. The peculiarities in the quantization 
procedure will be discussed in the next sections. 

As a by-product of our approach we provide a natural construction of the so called 
‘hidden symmetries’. Since we construct Lagrangians from Lie groups as associated 
with a particular left-invariant form Q, the right-invariant vector fields on the group 
leave the Lagrangian automatically invariant generating then the ordinary phase space 
symmetries. Furthermore, the Lie algebra of the group is also realized by means of 
left-invariant vector fields. Nevertheless, only those left-generators in the kernel of the 
two-cocycle (the kernel of d e  as well) leave the Lagrangian invariant and generate a 
sort of ‘hidden’ gauge-type symmetry. 

Extending the results of [7], we consider the Virasoro group and obtain the action 
functional of the m-induced gravity model [SI in the same way as the previous example, 
and in agreement with previous works [9 ,  lo]. The hidden SL(2, R) symmetry is 
generated by the left-invariant vector fields in the kernel of the Lie algebra two-cocycle. 
However, a more careful analysis shows that this connection only appears in the 
light-cone formulation, i.e. when x+ plays the role of the evolution coordinate, and 
the standard space-like formulation requires new ingredients for a proper definition 
of the symplectic structure of the Polyakov model [ 8 ] .  This important point has not 
been considered in related works based on the coadjoint-orbit approach [9,10]. 

We relate the Poincar.6-Cartan form of the higher-order variational calculus to the 
symplectic current of the covariant phase space formulation of field theory. Our 
proposal for the symplectic current for higher-derivative theories can also be used to 
define the symplectic structure of non-local field theories. We can then provide the 
proper expression of the symplectic structure, in the space-like formulation, of the 
zD-induced gravity despite of the non-local character of the Lagrangian. In the space- 
like formulation, the zo-induced gravity is no longer attached to the starting Lie group 
(Virasoro) structure. In fact, it turns out to be properly associated with the (non- 
reduced) SL(2, R)-Kac-Moody group clarifying then the proper geometrical meaning 
of the hidden symmetries of the theory. 

The physical picture that arises from our analysis is the following. In the light-cone 
formulation, the zD-induced gravity is geometrically associated with the Virasoro group. 
The hidden SL(2, W) symmetry emerges then as a ‘left’ symmetry (i.e. a gauge-type 
symmetry generated by the left-invariant vector fields in the kernel of the Lie algebra 
two-cocycle). In the space-like formulation, the theory is geometrically attached to the 
(non-reduced) SL(2, W)-Kac-Moody group and the hidden symmetry is then a right 
symmetry (i.e. phase space symmetry generated by the right-invariant vector fields on 
the group). 

The application of our approach to the Kac-Moody group LG leads directly to 
the action functional of the Chern-Simons (cs) gauge theory on the disc in the space-like 
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formulation. Obviously we avoid the two-steps interpretation of the corresponding 
field model: first as a WZW-model in the light-cone formulation [9] and then their 
explicit equivalence with the cs theory on the disc [ll]. We also show how we obtain 
an action functional describing the cs theory in the presence of a source by simply 
adding some cohomologically trivial two-cocycles to the Kac-Moody group. 

We cany out the quantization ofthe cs theory on the disc from the new quantization 
method and obtain a Hilbert space given by the integrable Kac-Moody representations, 
in agreement with other methods [12]. The quantization of the field model defined by 
the Virasoro group, i.e. the 2D-induced gravity model in the light-cone formulation, is 
much more complicated. Classically, their phase spaces coincide with the coadjoint 
orbits, diff S'/S' and diff S'/SL(2, R) of the Virasoro group. The standard geometric 
quantization of the coadjoint-orbits fails because it only gives rise to non-degenerated 
Verma module representations [13]. In terms of the present quantization scheme it is 
possible to solve this problem by imposing 'higher-order polarization' conditions to 
the quantum wavefunctions (see [14] for details). 

The paper is organized as follows. In section 2, and based on elaborated aspects 
of the variational calculus and the Noether theorem, we provide a generalization of 
the 'symplectic current' for higher-order and non-local Lagrangians to be used later. 
Section 3 follows with a short summary of the quantization approach we use in this 
paper. In section 4 we consider the field model constructed on the Virasoro group, the 
Virasoro field model, in connection with the zD-induced gravity. We also work out the 
symplectic structure of the (non-local) Polyakov action in the space-like formulation 
showing the proper meaning of the hidden SL(2, W)-Kac-Moody symmetry. In section 
5 we consider the field models constructed from the KacMoody groups in connection 
with the Chern-Simons gauge theory. By introducing a family of cohomologically 
'trivial' two-cocycles for the Kac-Moody group we describe the theory in the presence 
of a source. The quantization of the model is then carried out on the bases of the new 
group quantization approach. 

2. The variational calculus and the symplectic current for higher-order derivatives 

The main achievement of this section is the formulation of the Noether theorem for 
Lagrangians depending on a field + a ( x )  and its derivatives Js+a/Jx"t.. .ax'', s = 
1,. . . , r, in such a way that we can find a generalization of the 'symplectic current' 
and, hence, of the symplectic form, for arbitrary Lagrangians. 

First of all we shall become familiar with the fundamentals of the higher-order 
variational calculus in the most economical way, restricting ourselves to the ordinary 
Hamilton principle. .For a deeper study of this subject we refer the reader to [I51 (see 
also 1161). 

According to the ordinary Hamilton Principle, the higher-order variational calculus 
starts with a real Lagrangian density L= L(+-, J,+", . . . , JFwF,+m) and only the 
variations of the field +=, a+*, are considered as being independent. The variations 
of a,+", and higher derivatives are induced by those of +" and x', 6x'. This means that 

where dffdx'=af/Jx'+Jf//a+~.J,~"+af/J+~./a,,+'f ..., for any function f =  
mw, +", a,+". . .I. 
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The variations of x', $7, asv 3 +E, a,,+" = +Ev, .  . . are codified very often by 
means of a vector field X'= X*aIax*+ X'=ala$"+X;alag+. . .+X; ,_._ .,ala$; ,.., P,, 

where X" stands for Sx', Xu for S$", Xz for S$:, etc. For the ordinary Hamilton 
principle X' is of the form 

with x; ,.,. ,,, =dx:,..+Jdx P S. 

The action functional I is defined as follows: 

where o is the volume on the space-time M. The Hamilton principle states that the 
action must be extremal, i.e. 

r 

for any vector field X = X%/ax'+X"J/a$". 

equations: 
The solutions to (2.4) satisfy the obvious generalization of the first-order Lagrangian 

2.1. The Noether theorem 

We first review the case r = 1 very briefly. A vector field Y = Ypa/axp+ Y"a/aV is 
said to be a symmetry of the variational problem if 

L,i(2o)=dA (2.6) 

where v' is defined as in (2.2) for r = 1 and A is a (n - 1)-form (n =dim M) AV,, 
0, = (iJ/ax')w, the components of which, A", only depend on x" and 

Let us assume, for the sake of simplicity, that the variation Sx' associated with Y, 
i.e. its component Y', is zero (under the integral in (2.3) such a transformation can 
be absorbed by means of a change of variable), and that A = 0. In this case (2.6) 
acquires the traditional form 

Restricting 6 2  to an arbitrary solution t) we have 

If A #  0 then the conserved Noether current must be modified in the form j' = 
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J2/aJ,+".  Y" -A'. In the same way, if Y' # 0 the current takes the final form 

The expression (2.9) for the current can be brought to a more compact form with the 
introduction of the Poincari-Cartan n-form Ox, which reduces to 2% when +; = a,+= 
as has been indeed assumed hitherto. Defining 0, as 

a 2  
a*:: @,=-(d+"-@~dx') A 0,+2u=(d$"-Jlzdx') A i2=+2u 

. -  

the current above takes the form 
(2.10) 

j =  *(ip@,-A) (2.11) 

where the Q is the duality Hodge operator tuming (n-1)-forms into I-forms. 

for r =2. In this case 
Before giving the expression for j for arbitrary I let us repeat steps (2.7) and (2.8) 

- a*;- F; a*;v= Y;" 
and restricting again S 3  to an arbitrary solution $ we obtain 

(2.12) 

d a 2  d +--- 
dx' a+;. dx" aS"l,l 

An expression similar to (2.11) can be written for j in order 2 if we define ex in a 
form which generalizes (2.10) non-trivially. We write 

(2.14) 

We now provide general formulas for arbitrary r. If the vector field Y is a symmetry 
of 2, i.e. 

the current 
L ~ ( 2 m )  = dA (2.15) 

j = *(i+&- A) (2.16) 
satisfies 

arjalsol = 0 
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where is given by [15]: 

@pc= Afi>””s-l+%d 
s=, 

(2.17) 

where the As are solution of the following equations for arbitrary section field Y’= 
(Q”, Q;, $E”, . . ’ 1 *E>...’,): 

A$i-’slv,w = d()Pi”+” 0. 1.4, s= 1,. . . , r - 1  

A>””rlyr = 0. 

2.2. The symplectic current 

Going back to the first-order Lagrangians we can introduce the covariant momenta 
a: = JS/JY; and the covariant Hamiltonian X =  rZYz-3. The Poincar6-Cartan 
form then becomes 

e), = r z  dY“ A e,+ Xw. (2.18) 

As we shall see the Poincar.5-Cartan form is specially suitable for the debition of the 
symplectic structure on the phase space of a field theory. The expression (2.18) suggests 
the definition of a vector-valued one-form on the solution manifold 

j ”  = r:GY* (2.19) 

where S refers to the exterior derivative on the space of classical solutions. The 
differential of j’ 

ro’=-Gj”=SYy” A ~ ( J ~ / J Y ; )  (2.20) 

has been called ‘symplectic current’ [I71 since it defines a covariant charge-the 
symplectic form-when integrated on an initial-value hypersurface E: 

w =  J du,,w”. (2.21) 
P 

We have to remark that the two-fonn (2.21) is indeed a presymplectic form. In general, 
w can be degenerated and this means that we face a constrained system. The true 
symplectic form and the reduced phase space are then obtained by taking the quotient 
by the vector fields in the kernel of w. These vector fields are generators of gauge 
transformations. 

In order to be able to provide a natural generalization of these expressions for 
more general Lagrangians, say higher-order or non-local ones, it is useful to notice 
that j’ in (2.19) can be defined as the current such that 

Ss = JJ’ (2.22) 

on the space of classical solutions of the equation of motion [18]. 
Defining, as before, the symplectic current as 

= -8j’ 
U” verilies: 

(a) &”=O (b) J,d”‘O. 

(2.23) 

(2.24) 



Field models from Lie groups and symplectic structures 5397 

The last equality, which allow us to interpret wP as a sort of conserved Noether current 
for A = 0 and ax’ = 0, follows since 

d,ro’=-s(d~j”)=-s(s~)=O. (2.25) 

From the corresponding expression for the PoincarC-Cartan form we can write the 
general expression for the symplectic current potential j”  in the case of a higher-order 
Lagrangian: 

where 

(2.26a) 

(2.266) 

For first-order Lagrangians we recover the expression (2.20) and for the second-order 
ones we obtain 

(2.27) 

It is’obvious that no general expression for the ‘symplectic current’ for non-local 
Lagrangians can be given but it is clear the way in which it could be obtained. 

3. A group-theoretic, dynamical method: The Virasoro and Kac-Moody groups 

The group-theoretic method we use in this paper [I-31 aims to construct both thE 
classical and quantum dynamics of a physical system characterized by a Lie group G 
with a preferred U(1) subgroup generated by E. This subgroup defines which group 
parameter have a coordinate-momentum character and which play, on the contrary, 
a role similar to that of time. Parameters of q-p  type are those whose corresponding 
Lie algebra commutator gave a E term on the RHS. The rest are considered as generalized 
evolution parameters. 6 generalizes the U( 1)-principal bundle structure of a quantum 
manifold in the geometric quantization (GQ) approach [4-61, now allowing for non- 
symplectic variables like time. As in og we have a (connection) one-form @, the 
quantization form, although here it is defined naturally as the component of the 
left-invariant one-form dual to E and is not a contact form, i.e. dO has a kernel and 
is therefore a presymplectic form. The module ker 0 n ker dO is generated by left- 
invariant vector fields generating in tum a subalgebra %, the characteristic subalgebra. 

The characteristic subalgebra plays a significant role in many respects. %e constitutes 
the set of generalized equation of motion. The trajectories of its vector fields reproduce 
the classical equation of motion as well as the Bohr-Sommerfeld quantization rules, 
which appear as integrability condition for the (new) U(l) components of those 
equations. Moreover, the notion of polarization in this scheme generalizes the GQ 
analogue in that it contains the subalgebra se. A polarization is thus a left subalgebra 
of 8 containing gQ and excluding E. The exclusion of the E generator guarantee that 
no pair of coordinate-momentum variables are in the polarization S’ contains, roughly 
speaking, gQ as well as half the coordinates and momenta. The polarization conditions 

’ XLY = 0, XL E S’, on wavefunctions Y: 8 c) 02 such that BY = iY, are required to 
render the quantum representation irreducible. The Schrodinger equation is one of 

, 
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them. The quantum operators are the right-invariant vector fields which act properly 
on the subspace of polarized wavefunctions, as a consequence of the null commutator 
[X', X"] = 0, valid for any Lie group. We shall not insist any longer on the quantization 
techniques, which can be found in [ 1-31 (see also [ 14]), but rather we shall be concerned 
with symmetry properties. 

All physical properties of the system characterized by 6 are concentrated in the 
one-form 8 generalizing the Poincark-Cartan form Ow. In local coordinates 6 is of 
the form 8 = p  dq- H dr+dl/iC, l~U(1). The total differential term d l / i l  that distin- 
guishes 8 from OK converts semi-invariance of the latter into true invariance (null 
Lie derivative) of the former and permits taking Cl to the quotient manifold &/Se. 
The symmetries of 8 are given by right-invariant vector fields 2'. For them L p O  = 0 
since 8 is a component of the left-invariant one-form aL, 8- 4'([). In fact, it is a 
general propeity of Lie groups that LX&=O, LX:n,4L'b'= -C:d44d' where C$ are 
the structure constants. The Noether theorem is then nothing but the assertion that 
L p ( i p 8 )  = 0,  '~"R'E Se, i.e. ipe-the Noether invariantsare constants along the 
generalized trajectories of the motion. 

In addition to the right-invariant vector fields (RIVF), those left-invariant vector 
fields (LIVF) in Se also leave 8 invariant and constitute, therefore, a (non-conventional) 
symmetry of the physical system. In fact, L p  A.$ 9Y4<'=-Cc ob and no vector 
field 2tb) there exists whose commutator with X, . )E Se gives a term proportional to 
2&,-E. None the less i~ fa ,4L 'c '=0  by duality, i.e. the left Noether invariants are 
zero. The relevance of the left-symmetry will come out later when translated to ordinary 
field theory. 

3.1. The Virasoro group 

Let us now analyse the case where & is tbe extended diffeomorphism group of S', 
dig S'. Given a diffeomorphism F: S' t+ S', we can define co-ordinates I., n E H ,  by 

so that the group law ( F * G ) ( u ) =  G o F ( u ) -  G ( F ( u ) )  adopts the expression 
(1' corresponds to F and I" to F* G): 

(3.2) 
(iPY 1; = 1;+ 1, + ipl&;-p+- lpr;lk-"-p+. . . . 

2! 

The two-cocycle giving the central extension of diff S1 by U(l) reads, when written in 
coordinates l,, 1141, 

x P ( n l , .  . . , nh)ln, . . . l,J", . . . (3.3) 

where Pch)(n , ,  . . . , nh)  is a symmetric, homogeneous polynomial of degree k in the 
n,, . . . , nk variables. Its expression is 

p("(n,, . . . , n r ) =  E a ~ ~ ! , . A . n $ .  . . n$ (3.4) 
P M W  
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where the coefficients ai:!..A, are obtained recursively by 

(3.5) 

In local coordinates any g E dig Si can be finally given as g = (G, C), G E diff SI, 
c ~ U ( 1 ) .  Then the composition law g"=g'*g is written as follows: 

g"= (G°F, r'5exp i W ,  G) exp itco@, GI) (3.6) 
where we have also added a trivial cocycle (coboundary [14] generated by the function 
b,  i.e. 

C' 

24 6 = - - - ( I ; - & -  U. cob 

Here c' is a constant parameter and 10" is given by (3.2). 
From (3.6) all the physicakinformation of this model can be drawn out. We want 

now to rewrite 0, 2% and X R ' s  in 'coordinates' F to compare with more physical 
objects. To do that let us start with 0 in coordinates 2. and perform the change of 
variables (3.1) Q posteriori. 0 is given by: 

- 1  

Making the mentioned change 0 becomes 

and after two integration by parts, 

The F-expression of the vector fields is nevertheless more easily obtained by first 
working out the unextended part from the group law of diff Si, and then the central 
terms by duality on (3.9). The expressions of R$,) and gkcn are respectively 

(3.10b) 
As mentioned above the ordinary symmetry is realized by the right-invariant vector 

fields, and the group-theoretic version of the Noether theorem provides the Noether 
invariants [7] 

i.e. the Fourier coefficients of an energy-momentum tensor. 



5400 V Aldaya et a1 

It can be checked that for 2' in the characteristic subalgebra %&,, i.e. (%i, 2:) if 
c'/c = rz E N', or (2:) otherwise, Lp0 = 0 but the Noether charge i,&3 is actually zero. 

3.2. Kac-Moody groups 

In the KaoMoody case we start with the (symmetry) group 6= LG, the central 
extension by U(1) of the loop group, LG, on a connected, simply connected, simple, 
compact group G. As is well known, LG is a non-trivial principal bundle with base 
LG and fibre U(1) [ 12,191. The Maurer-Cartan one-form 0 provides a globally defined 
connection one-form in the principal bundle LG H LG. However, due to the non- 
triviality of the bundle we cannot find a well-defined projection of @ onto the physical 
'configuration' space LG and, hence, a well-defined, univalued Lagrangian. Neverthe- 
less, using a local trivialization of the bundle, we can provide a local expression for 
0 and then a (now multivalued) action functional. 

Given two elements (Q, 5).  (b, 5') of a local trivialization of LG such that a, b and 
a' 6 are in a neighbourhood of the identity of LG, the composition law has the general 
form 

(3.12) (b, l')*(o, 5) = ( b .  0, l ' 5 w  i5(b, a )  

where the 'two-cocycle' g is given by [ 191 

(3.13) 

1 
48m2 h(Z)=--[(sinhZ-Z)/Z'] 

and b.  a = exp Z, a = exp X, b = exp Y (the dot between elements of G will henceforth 
be omitted). The bracket ( ,) in (3.13) is the Killing form of the Lie algebra of G with 
the standard normalization and DcW2 is the unit disc (JD=S' ) .  Of course, the 
expression (3.12) is well-defined irrespective of the extension of g from S' to D [20]. 
For the sake of simplicity we shall use the same notation for maps on S' and for any 
extension of them to D. The two-form H verifies the property 

1 
48 m 

dH(X)=--;l(daa-', (daa-')'), (3.14) 

The 'winding number' k E H will play the role of the dimensionless coupling constant 
of the physical action (the Chern-Simons gauge theory [ll], as we shall show later). 

The cocycle (3.13) is given as an integral of a two-form on 0, i.e. 

4% a)=  J (b, O ) * ~ Z  (3.15) 

a2 being a two-form on G x G and (Q, b)* the pull back of the artesian map a x b = 
(4 6) (an extension to be precise) from D to G x G. From .$(a, b) the local expression 
of the left-invariant one-form 0 = %rcc) can be immediately derived according to the 

D 
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general formula 

(3.16) 

To carry on the local calculation of 8'(<)=@ we shall write (3.15) as the integral of 
a one-form a,: 

t ( b ,  a )  = J , (b, a)*.,. (3.17) 
s 

However, we need not the actual expression of a]. It su5ces to write a, as 

a, = Ai(b, a)  da'  +Bj(b, a)  db'. (3.18) 

Then, the one-form 8'"' acquires the general form 

where the prime stands for the derivative with respect to the S' argument. 
On the other hand do, = cy2 takes the form 

JA JA. JAi JB. 
[Jaj  Ja'] [ J W  Ja ] a2=dal (b ,a )=$  d d A d a ' +  --f dlr'ndn' 

(3.19) 

(3.20) 

Comparing (3.20) and (3.19), and taking into account the expression of t (6 ,  a )  in 
(3.13) we can identify terms and write a local expression for 8"<' as 

I +Is, du[(X', h(adX) dX)-(dX, h(adX)X')] 

(3.21) 

As in the Virasoro case and for the sake of completeness, let us consider the ordinary 
symmetries. Let X:t be the RIVF on 0. The extension, R", of the right-invariant vector 
fields on LG could be calculated directly from the group law (3.12) but it is far simpler 
to the invariance properties of 8' with respect to 3". In fact, L p S L =  
( ipd+dip)8 '=0.  Then if g R  is of the general form XR+X%, one has 

I da[(X', h(adX) dX)-(dX, h(adX)X')l 

0 = L p  4 ' ( 0  = i X R  daL(()+ d( i X ~  8 '(<)+ Xm) = &R 8'({) + dXRL 

jL,~fi ' " )= -dXRC (3.22) 

which determines XR( completely since X R c  must vanish at the identity of the group. 



5402 V Aldaya et al 

The extended RIVFS take the form: 

- i p J ( X ' ,  h(adX) dX)-(dX, h(adX)X') E 1 (3.23) 

Following the general scheme, the Noether invariants associated with the right- 
symmetry (3.23) are given by 

Obviously, the Poisson brackets of the invariants (3.24) close the Lie algebra of the 
symmetry group E The two-dimensional nature of the KaoMoody field model will 
be discussed in section 5. 

To conclude this section let us consider the variables ab, n E H  in analogy to (3.1): 

a ' (u )=  a!,e'"'. (3.25) 
" E 2  

The associated generators (say left-) will be given by 

(3.26) 

It is not difficult, in this variables, to work out the characteristic subalgebra (a basis 
of which generates the module Ker 0 n Ker de) .  It is 

(3.27) %e = (Xki, i = 1, . . . , dim G). 

4. zD-induced gravity 

The integral of the 1-form 0 for the Virasoro group along the 'trajectories' d F =  P d7 
defines the following action functional: 

where the r variable is the evolution parameter (the dot means derivative with respect 
to r). From now on this field will be referred to as the Virasoro field model. 

4.1. The Viraasorofield model and hidden (left) symmetries in io-gravity 

The Virasoro field model whose action is given by (4.1), defines a two-dimensional 
conformal field model-invariant under the transformations x-+ h ( x - ) ,  xf+  i(x')-if 
the 'space' parameter o and the evolution coordinate r are interpreted as the light-cone 
coordinates x-, x+ (or x', x-) respectively. With this identification the action (4.1) 
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now reads 

(4.2) 
This action functional coincides, for c'=O, with the zo-induced gravity action in the 
light-cone gauge [8] (where f =  F'; had we chosen the group law for diff S' as 
(F*G)(x)= F(G(x)) instead of ( F * G ) ( x ) =  G ( F ( x ) )  we would have obtained 
directly the Polyakov action [8]). An expression similar to (3.9,4.2) has also been 
obtained in [9] in a different way by means of the co-adjoint orbit method and 
parametrizing the orbit with the group variables. It should be noted that the requirement 
of using the group parameters in constructing the action functional in the co-adjoint 
orbit method (see also [lo]) partially parallels the idea of the group theoretical 
quantization [l-31 at the classical level (at the quantum level fhe difference between 
both approaches is much deeper (see [14]). 

We have to point out that the evolution parameter for the Virasoro field model 
should be identified with a light-cone coordinate in order to relate it to the gravitational 
action. The Polyakov action (4.2) in the standard space-like formulation is out of reach 
of the Virasoro group. We shall see later in this section, and after constructing the 
proper symplectic form of zo-gravity, that it can be still related with other Lie groups. 
Before that we can explore the 'hidden' symmetries of the Virasoro field model and 
translate them to zo-gravity. 

As mentioned in section 2, the action (4.1-4.2) has the ordinary (right) symmetry- 
diff SI-generated by the right-invariant vector fields 2; leading to the corresponding 
conserved charges (3.11). In addition, and following the general scheme, we can face 
'hidden' (left) symmetries generated by the left-invariant vector fields lying in the 
characteristic subalgebra C ~ Q  or, equivalently, in the kernel of the two-cocycle. In fact 
those vector fields XL in % are characterized by the defining property that ip6 = 0 = 
i s  d e ,  which implies Lp@ = 0, i.e. they are symmetries in the physical sense although 
obviously the Noether charges i&l are zero. However, a realization of CeB on the 
space (7, U; F )  of definition of the physical action can produce a non-trivial Noether 
current. It seems then clear that a field-theoretic version of the vector fields in CeQ can 
be the generators of the hidden symmetry. In this case the hidden (left-)symmetry 
depends upon the values of e and e'. If c'/c = r 2 E  N2 the hidden symmetry is generated 
by gQ= (n:, nf,, Ti)= sL(2, W), and CeQ = (2:) for c'/c # r'. 

It must be remarked that, in general, the RIVFS on a Lie group 6 pass on the 
manifold on which it acts from the left, giving a realization of the Lie algebra Ce of 
G. In the present case all the RIVFS of the Vkasoro group are translated to the (T, U; F )  
space defining the ordinary (unextended) symmetry of (4.2). Nevertheless, only those 
LIVFS of the Virasoro group that belong to C ~ Q  define an action on the (T, U; F) space 

S 
Xt;= I d u z Z  

(4.3) 

leaving semi-invariant the Poincard-Cartan form 6% associated with the third-order 
Lagrangian in (4.2), i.e. LpO, =dAx~.  The appearance of  AX^ is traced back to the 
missing of the central extension terms in going from the group to the (I, g; F) space. 
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Following the general scheme of section 2 the form Ow is 

J . Y  
e, 

=%+yA-e++yA J.Y (:E - + A -  ) e _ + Y - A  (::-+A--)e-+y-- - 

e-. 

JF+ 
JZ 

JF--- 
A- 

An explicit calculation gives 

3 _=- J . Y  - C  ( - 1 (F--- -- 2- F?-) +r2(F-- l )  
JF, 4 8 a  F- F- F! 

JF- 

JZ -e F+ 
JF__- 4 8 ~  F?‘ 

- 

Let us unify the notation for the vector fields (4.3) as 

k = O  i r. iw d Xk-e 
JF 

The expression of their extension xi acting on F, F,, F,,, is given by 

(4.5) 

J J 
x3- iw - +(ik)F,--+[(ik)’FF,F.+(ik)F,,1 - 

(:F JF, JF,, 
J + [(ik)’F,F,FA+ (ik)*(F& + FA,F, + F,F,) + (ik)F,,J -. (4.6) 

To test the semi-invariance of the Poincar6-Cartan form we can restrict ourselves to 
the case F,=J,F, F p v = J , F ~ ,  so that L x O w =  L X ( Z w )  and, in this case, it reduces 
to Lx3w. The Lie derivative of 3 gives 

J F ~ A  

1 F+F-- 
F- 

ikF+(F--l)+- =-a,.AG) 

, 

(4.7) 

The corresponding conserved currents are 

48 T F-  “--I F- 
e [ (F--- F??) 

&)=-- r2(F--1)+ 2 - 2 -  , r 2 F + + y  
(4.8) 
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These currents can be written in the form J ’ s  ( J + ,  J - )  = (d+, J - ) ,  in agreement with 
the fact that the Noether charges in the light-cone, dx- J + ,  associated with hidden 
symmetries are zero. Indeed, since A above is defined except for a closed form, J is 
defined up to a divergenceless term J’. Taking J‘= (-d-F+, a+j+)  we get J+ J‘= (0, j), 
satisfying a-j = 0, where j is given by 

(4.9) 

Needless to say that the ordinary Noether charges defined on the plane t=O are 
non-trivial ( jdx(J++J-)  # 0). 

If we now consider that U E Iw instead of U E S‘, the expression of the one-form 0 
is the same as in (3.9) but the characteristic subalgebra is a sL(2, W) algebra (even 
for E’= 0) generated by the vector fields 

(4.10) 

A calculation similar to the one described above leads to the following Noether currents 

F’ 

(4.11) 

f 2 F +  . F2F+-- F’F--F+- FF+- 
- 2 -  1 F’ F- 

These conserved currents coincide with the ‘accidental’ sl(2, W) current algebra of 
zD-induced gravity discovered in [SI. In fact, it is straightforward to verify that after 
the change of variables x-+ F ( x - ) ,  the metric field h++ = f+/ f- (where ds2 = dx’ dx-+ 
h,+(dx+)’) takes the form 

f+/f-=j(+)(X+) -2 j , , ) (x+) .x -+ j , - ) (x - ) * .  (4.12) 

4.2. Symplectic structure of the non-local zD-gravity action and hidden (right) symmetries 

It is clear from the results of this section and section 3 that dO provides the symplectic 
form of zo-gravity for the hypersurface x+ = 0. In fact, dO coincides with one of the 
chiral components of the symplectic current, U+, of the action (4.2) integrated with 
respect to x-. To get the symplectic form associated with the hypersurface t = O  we 
need to know both chiral components OJ’ and U- of the symplectic current. We can 
compute CO- by means of the general expression for the symplectic current obtained 
in the previous section. Up to total derivatives, the symplectic current is given by (we 
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have identified the symbols d and 8 )  

C' 

4 8 ~  
+-dFndF+ (4.13~) 

(4.13 b )  

The symplectic form for the hypersurface t = 0 i s  then 

w = J  dx(w-+w+). (4.14) 

We have to stress that w is not degenerated, thus leading to a well-defined Poisson 
bracket, even though the chiral symplectic forms dx- a,' and dx+ a,- have non-trivial 
kernel (this issue and its relation with the Poisson-Lie groups have been discussed in 
[IS]). We can now conclude immediately that the 2~-induced gravity action (4.2), in 
the space-like frame, is no longer attached to the Virasoro group. In other words, dO 
cannot define properly the Poisson bracket for the currents (4.11), due to the fact that 
they become trivial functions on the phase space d e h e d  by the hypersurface x+ = 0. 

To investigate the possibility of finding a new Lie group capturing, in the space-like 
formulation, the Polyakov model we have to reconsider the gauge-fixed action fun& 
tional in terms of the metric field h(=h++)  instead of the auxiliary field F (orf) 

(4.15) 

where V = a+ - ha-. Although this action is non-local, the formalism developed in 
section 2 allow us to carry out a canonical treatment of the theory. 

The equation of motion reads 

ZJ?(V-'J-h) -(J-V-'d-h)2 = 0 (4.16) 

and the symplectic current potential is given by 

j' = -(&h + ha_V-'a_h)S(V-'d-h) - 2&V-'J-k6h 

j- = J-V-'& hS (V-'a_ h ) . 
(4.17a) 

(4.17b) 

The symplectic form for the hypersurface t = 0 is then 

a, =-I C (o-+o+). 

24a (4.18) 

It is not difficult to see that the equation (4.16) can be rewritten as 

{A x-) = 0 (4.19) 

where {Ax-} is the Schwartzian derivative and V-ld-h =In J J  As is well known the 
general solution to (4.19) is 

A(x+)x-+ S(x') 
f=c(x+)x-+D(x+)  (4.20) 
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where AD - CD = 1. It is now easy to amve at the standard equation [8] (h = J+f/J-f ): 

a?h = 0. (4.21) 

Inserting the solution (4.20) into (4.18), and after a long but straightforward 
calculation, we obtain the following expression for w :  

(4.22) 

It is not di5cult to check now that the two-form w (4.22) turns out to be related with 
the corresponding two-form d@ associated with the SL(2, R)-Kac-Moody group (for 
SL(2,R) we can still use the expression (3.21)). The form w is invariant under a 
constant SL(2, R)-transformation and define, therefore a non-degenerated symplectic 
form on the coset space LSL(2, R)/SL(2, R). A global parametrization of this space is 
given by the metric degrees of freedom, i.e. by the currents j: 

(4.23) 

D= I 1  
0 = I dy{S( B'D - BD')S(C/D) -- GDSD' 

6rr 

h = j(+,(x+) -2j(,)(x+) .x-+jc-)(x'). (x-)'. 

j (+ ,  = B'D - BD' 

jc-, = A'C - AC' 

jco, = -1/2( B'C + AID- BC'- AD') 

where 

(4.24) 

This unravels the proper group/geometrical meaning of the 'hidden' symmetries as 
ordinary phase space symmetries, in contrast with the gauge-type interpretation arising 
in the light-cone formulation (described by the Virasoro group). 

5. Chern-Simons gauge theory and WZW-models 

As in the Vuasoro case the integral of the one-form 0 of the Kac-Moody group along 
'trajectories' da = a  d r  defines a (multivalued) action functional: 

dm(a-'a', a-'a)+2rrk h(ad In a)a-'ci). 

(5.1) 

The field model constructed this way will be called the Kac-Moody field model. From 
(5.1) it is definitely a two-dimensional field model. However, to get a more transparent 
expression for the action (5.1), it will be useful to rewrite it as a three-dimensional 
integral. Using the relation (3.14) and the Stokes theorem we obtain 

We immediately recognize the action (5.2) as that of the Chem-Simons theory [ I l l  
restricted to 6, E J,A, - JjA, + [A;,  A,] = 0 on the disc (A, = J,an-'): 

(5.3) 
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The Kac-Moody field model constructed from the group ='(the Lie algebra of which 
is the current algebra) is then equivalent to the Chem-Simons gauge theory on the 
disc. We have to stress that, in contrast with the first example, the Kac-Moody field 
model has been directly interpreted as a physical theory in the space-like formulation. 

We can now wonder whether or not the Kac-Moody field model can also be related 
to some conformal model in the light-cone formulation. As first pointed out in 1111 
the cs theory on the disc is intimately related to WZW-models. We shall now recover 
this result in a simple way to show that the 'hidden' left-symmetries ofthe Kac-Moody 
field model correspond indeed to the well-known chiral left G-symmetry of WZW- 
models. The two-dimensional and multivalued Kac-Moody action functional (5.1) 
turns out to be the WZW-action [21] whenever the coordinates U and T are interpreted 
as the light-cone coordinates x- and x': 

A = -- d2x(a-'a_a, a-'a+a)+Zrk d2x(a-'a-a, h(ad In a)a-'a+n). (5.4) 8r k j  I 
The covariant form of the expression (5.4) is the well-known WZW-action (had we 
chosen the interpretation of n and T as x+ and x- we would have not obtained the 
relative sign between the two terms of (5.2). This is, however, a matter of convention): 

For the sake of completeness we shall perform in WZW-models the calculation 
analogous to that of hidden symmetry in zD-gravity. In so doing we shall be led to the 
well-known left G-current algebra [21, 221. By construction, the action (5.5) possesses 
the right Kac-Moody symmetry generated by the right-invariant vector fields f& 
having j ; ) =  'f&x)Q = k/Zr.(X,, i ,  a-aa-I) as Noether currents (3.24). The 'hidden' 
left-symmetry is generated by the characteristic subalgebra gQ, which is now given by 

(5.6) 
where 3:; are the zero modes of the vector fields f:icx). The conserved left-currents 
are then j&-(X.', a-'a+a) (a-j'=O). 

-I. . %B=(X.:, I = 1,. . .,dim G) 

5.1. Chern-Simons theory with sources 

As is well known, the infinitesimal version of the two-cocycle (3.13) on the loop group 
LG gives rise to the centrally extended a5ne Kac-Moody algebra i, which in the 
Cartan-Weyl basis takes the form (see for instance [23]) 

(5.7a) 

(5.76) 

(5.7c) 

[ E : ,  E8,I = & ( a , P ) E : Z  if (I + p  is a root (5.7d) 

where i, j=  1,. . . , r =  rank of g, (I' are the system of simple roots of g and &((I, j?) 
are some integers. In the same way as the addition of a (trivial) Lie algebra two-cocycle, 
(-c'/12)nSn,-,, to the Virasoro algebra (corresponding to a redefinition of the Lo 
generator; c'/12 must be an integer if Lo is a compact generator, although continuous 
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values of e' are allowed if we consider the universal covering group of diff SI) 
[L., Lm]= (n - m)L.,,+ft(cn'- c'n)&_, 

led to a non-trivial Lagrangian term, we can now consider trivial two-cocycles generated 
by the diagonal operators HA (HA-, HA+p').  The Lie algebra commutators (5 .74  b, d )  
do not change but ( 5 . 7 ~ )  becomes 

Since the compact generators 2(a, a i ) / ( a ,  a). Hb have integer eigenvalues, the 
parameters +i should satisfy the following integrability condition ( p  = Xi piai): 

otherwise the corresponding two-cocycles are not univalued. From now on the para- 
meter p will be called rhe weight ofthe extension. 

The contribution to the one-form Q of the corresponding two-cocycles on the loop 
group is 

(5.10) J + du(a-'a', h(adln a)a-' da) J 
and the action functional is then of the form 

We find this way a group theoretical description of the Chern-Simons theory in the 
presence of a source (compare, for instance, with [ll]). 

The action (5.11) does still have the right G-Kac-Moody symmetry, although the 
'hidden' left-symmetry is no longer a G current algebra due to the presence of the 
additional term coming from the tirival two-cocycle. In fact, the characteristic sub- 
algebra SQ or, what is the same, the kernel of the two-cocycle in (5.8) depends on the 
particular values of the parameters p'. A simple inspection to the commutator (5.8) 
reveals that 

SB=(Hb,Ein;Vi=l  ,..., rankG,Va/(a,p)=O). (5.12) 

If p=O-the standard cs action--'$o generates the ordinary left symmetry G. In the 
general case p = X  "A,, where Ai are the fundamental weights and mi are integers (we 
shall restrict ourselves to mi = 0, 1,2,. . . because only these values will be allowed in 
the quantization), Sa generates some real parabolic subgroup Po of G. If each mi, 
i = 1,. . . , rank G, is different from zero, PG is the maximal torus T = U( 1)O. . .O U( 1) .  
If p is just one of the fundamental weights Ai ,  Po is: U(l)@Ai-IBAI-l for AI; 
U ( l ) ~ A i ~ , O B 1 - ,  for El;  U(l)OAi-l@Ci-l for Cl; U(l)OAi-lODl-l for D,; for E6, 
Po is U(1)C3D4 if i = 1 Or6, A5 if i =2, U(1)OA10A4 if i = 3 or 5, U(l)OAzOAIOAz 
if i = 4 ,  etc (we have used the notation of [24]). For any degenerated weight-m'=0 
for some j = 1, . . . , rank G-the determination of Po comes also easily from the Dynkin 
diagrams. 
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5.2. Group theoretical quantization of the Chem-Simons theory with sources 

We have seen in previous sections that our group quantization approach allows us to 
establish, at the classical level, a physical interpretation of centrally extended Lie 
groups as Lagrangian theories whose actions are given by the Maurer-Cartan form 
associated with the central generator. It is our aim in this subsection to quantize the 
theory using the new scheme. We now proceed to quantize the theory from the general 
prescription presented in section 3. 

The phase space of a field model constructed from a Lie group d is given by 
G/ SO. In the present case, the corresponding phase spaces (also defined by the initial 
data surface t = r = 0) are then the coset (symplectic) spaces LG/PG which, in turn, 
coincide with the co-adjoint orbits of the KaoMoody group [ 12,251. Moreover, the 
action (5.11), &+), is already in Hamiltonian form and the Poisson bracket algebra 
of the kac-Moody Noether invariants j ; ,  which now close the algebra (5.74 b, c; 5.8), 
is then associated with the action (5.11) much in the same way the Heisenberg-Weyl 
algebra 

{p,4}=1 (5.13) 

is associated with the 'action' 

pq dt. (5.14) I 
Following this analogy, the Hilbert space of the Chern-Simons models (5.11), is given 
by one (unitary) irreducible representation of the KaoMoody algebra (5.7.5.8) in the 
same way as the Hilbert space of the 'action' (5.14), Lz(W, dx), is given by the (unitary) 
irreducible representation of the algebra (5.13). In fact, and following again the general 
scheme presented in section 3, an explicit construction of the Hilbert space Y&,,) can 
be given in terms of the complex functions on LG, verifying the U( 1)-equivariance 
condition EY = iY as well as the polarization equations X'Y = 0, 2L E 9, where the 
polarization 9 is given by 

(5.15) 

The condition for having a non-trivial space of polarized functions reads as follows: 

O G ( 6 . p ) S k  (5.16) 

where 8 is the highest root of the Lie algebra g of G. We can establish the condition 
above by realizing that for every trivially extended SU(Z)&U(I) subgroups of LG 
generated by 

the space of polarized functions (with the restriction of 9 to this sU(Z)Qu(l) algebra) 
is globally defined only for (the winding number 2(a, p ) / ( a ,  a ) + 2 n k / ( a ,  a) plays the 
role of the spin 2 j )  

9 = (R&,, Rh;,,, %?O, Va,  Vi  = 1, . . . ,rank G). 

(2&, 2&, 2k:, E) n < O  

(a. p )  + nk 0 V n a O  V a. (5.17a) 

If n>0, the restriction of 9 to the sU(2)Qu(l) subalgebra is now different and the 
condition for having a non-empty space of polarized functions is 

( a . p ) + n k s O  V n  < O  VO. (5.176) 

Both conditions are equivalent to (5.16). 
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Among the polarized functions there is one (a highest-weight vector IO)) that is 
annihilated by the operators 

%>o XH',o - L  2&. 
In particular, 10) is annihilated by the operators 2;;. Now, redefining the operators 
2;; -pi=-= X f i ; ,  to re-establish the standard commutators (5 .7~ )  of the KaoMoody 
algebras, the primed generators verify 

R$;/O) = pilo). (5.18) 

The expression above shows that the parameters pi of the trivial extension that led to 
the insertion of a source for the cs theory are the weights ofthe corresponding quantum 
representation. Thus, the Hilbert space 2&+) is given by an integrable highest-weight 
representation of level 2 k / #  (or k if we choose 4*=2)  and weight p. Since the 
vacuum is also annihilated by the operators 2&, the isotropy group of the vacuum 
10) = lp) is then given by the parabolic subgroup Po associated with the weight p. This 
result provides an almost one-to-one correspondence between the classical actions 
Atr+), the phase space LG/PG and the corresponding Hilbert spaces 7&+), and 
generalize, in some sense, the Borel-Weil theorem [ 121, which only consider the phase 
space LGI T, where T is the maximal torus. 

We now briefly comment on the quantization of the SL(2, R)-Kac-Moody field 
model (i.e. the SL(2, W)-Chem-Simons theory, or the gauge-fixed Polyakov action, in 
the space-like formulation). If we try to extend the discussion of the theories with 
compact gauge group to the SL(2, R)-field model we face the problem that the condition 
for having a unitary, standard highest-weight representation implies a vanishing central 
charge (see [26])*.  We arrive this way at the apparently disappointing conclusion that 
there is not a consistent quantum description of the model. However, from the physical 
point of view and, in the context of the zo-induced gravity interpretation, this is not 
an unavoidable drawback. Since the starting point has been a gauge-fixed action, the 
physical Hilbert space should be then defined as a constrained subspace of the carrier 
space of the irreducible representation. The corresponding constraint is: A-) = A/Z, 
i.e. the constant curvature condition ( R  5 &% = A/2)  coming from the covariant 
Lagrangian 3= e / 9 6 r G ( R A - ' R + A ) .  The constraint leads then to the standard 
quantum Hamiltonian reduction [28] allowing reinterpretation of the (constrained) 
theory, in the space-like formulation, in terms of the Virasoro group. 
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*Remarkably. it is still possible to construct a new class of unitary, irreducible representations of the 
SL(2, R)-KaoMoody group with zero central charge [261. A physical interpretation of these (exceptional) 
representations, along the lines of the present work, has been given in terms of the quantization of an 
ultralocal field model for gravity [27]. 
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